Приписывали алмазу и самые невероятные свойства. Не избежал фантастических вымыслов и римский ученый Гай Плиний Старший, давший первое подробное описание алмаза. В своей работе «Естественная история ископаемых тел» он пишет, что если поместить кристаллик алмаза между молотом и наковальней, то скорее они разлетятся вдребезги, чем повредится «царь камней». На самом деле алмаз очень хрупок и совершенно не выдерживает ударов.
Чаще всего крупные алмазы находят в виде неправильной глыбы, мало отличающейся по форме от обычного булыжника. Именно таким был и самый большой из найденных когда-либо алмазов — «Куллинан». Его обнаружили 26 января 1905 года в Южной Африке в руднике «Премьер» и назвали по имени президента компании «Премьер Дайамонд Майн» сэра Томаса Куллинана (в 1922 году эта компания вошла в состав знаменитой ныне «Де Бирс»). Этот камень размером с кулак весил более 600 граммов! Причем его форма свидетельствовала о том, что это лишь часть более крупного камня. Когда ценнейший подарок доставили английскому королю Эдуарду VII, тот был явно разочарован. «Попадись этот камень мне, — сказал король, — я бы принял его за обыкновенную стекляшку и презрительно отшвырнул ногой!» Но прожил «Куллинан» всего три года — его раскололи и распилили на сотни кусков и кусочков. Из них после огранки получили 105 бриллиантов, из которых девять были весьма крупными. Самый большой, массой 106 г, названный «Куллинан I», был вмонтирован в верхнюю часть скипетра английского монарха. Этот самый большой в мире ограненный алмаз хранится вместе с другими сокровищами английской короны в Тауэре. Второй по величине бриллиант, «Куллинан II» (63,5 г), был вмонтирован в корону Британской империи.
Кстати, массу алмазов и бриллиантов выражают не в граммах, а в каратах; 1 карат = 0,2 г. И мало кто знает, что алмаз характеризуется необычайно высокой для неметаллов теплопроводностью; поэтому крупные алмазы на ощупь всегда холодные — как куски металла.
Геологам всегда было интересно, как давно в недрах Земли образовались алмазы. Но как это определить? Недавно в руки геологов попали южноафриканские алмазы, содержавшие включения граната в виде красивых мелких кристалликов, в которых оказались небольшие примеси самария. Этот редкоземельный элемент имеет разновидность (изотоп), который очень медленно распадается (период полураспада составляет 106 миллиардов лет). При этом он превращается в другой редкоземельный элемент — неодим. По количеству этого неодима, зная скорость его образования, можно определить возраст алмаза, т. е. время, когда в него попал самарий. Как показали расчеты, самарий попал в гранат 3,2–3,4 миллиарда лет назад. И если возраст Земли оценивается примерно в 4,6 миллиарда лет, то этот кристалл алмаза ненамного моложе нашей планеты.
И алмаз, и графит — кристаллы. Почему же их свойства так разительно отличаются? Это объясняется разным способом соединения атомов углерода друг с другом. В алмазе все связи между атомами углерода одинаковые и прочные, твердым получается и сам кристалл. Кристалл же графита имеет слоистое строение, в нем атомы углерода прочно связаны друг с другом только в одном слое. Такой кристалл похож на пачку бумаги, которую очен ь трудно разрезать пополам, но легко рассыпать на отдельные листочки.
Алмазы образуются в недрах Земли в условиях очень высоких температур и давлений. Спустя почти два столетия после опыта Лавуазье ученые смогли создать в лаборатории условия, при которых из графита можно получить алмаз. В настоящее время производство искусственных алмазов исчисляется десятками тонн! Есть среди них и ювелирные, но основная масса искусственных алмазов идет на изготовление разнообразных инструментов.
Искусственным путем люди научились получать очень многие драгоценные камни. Например, подшипники для часов и других точных приборов уже давно делают из искусственных рубинов. Получают искусственно и прекрасные кристаллы, которые в природе вообще не существуют. Например, многие слышали о фианитах (их название происходит от сокращения ФИАН — Физический институт Академии наук, где их впервые получили). Бесцветные фианиты на глаз трудно отличить от алмаза — так красиво они «играют» на свету.
Ученых давно интересовало, как образуются кристаллы, почему разные вещества дают кристаллы разной формы, а некоторые вовсе не образуют кристаллов, что надо сделать, чтобы кристаллы получились большими и красивыми. Исследования показали, что кристаллы — это вещества, в которых мельчайшие частички (атомы, ионы или молекулы) упакованы в определенном порядке. Именно этот порядок определяет форму кристалла. А зависит он как от геометрической формы частиц (ионов или молекул), из которых построен кристалл, так и от того, как они друг к другу притягиваются, какими местами могут соприкасаться, а какими — нет. Некоторые вещества кристаллизуются легко, другие — с большим трудом или вовсе не образуют кристаллов. Почему так?
Представьте себе, что вы укладываете паркет, а товарищ подает вам плитки. Легче всего работать с плитками квадратной формы — как ни поверни такую плитку, она все равно подойдет к своему месту, и работа пойдет быстро. Труднее выложить паркет из прямоугольных дощечек, особенно если у них с боков имеются пазы и выступы — тогда каждую дощечку можно уложить на место одним единственным способом. А теперь представьте себе, что помогающий вам товарищ очень торопится и подает плитки быстрее, чем вы успеваете аккуратно укладывать. Понятно, что правильного узора теперь не получится: где-то плитку перекосит, и дальше все пойдет криво, где-то появятся пустоты (как в известной компьютерной игре «Тегрис», когда «стакан» заполняется деталями слишком быстро и вы не успеваете уложить их аккуратно, без промежутков). Ничего хорошего не получится и в том случае, если в большом зале начнут укладывать паркет сразу десяток мастеров — каждый со своего места. Даже если они будут работать не спеша, крайне сомнительно, чтобы соседние участки оказались хорошо состыкованными, и в целом виду покрытия получится весьма неприглядным: в разных местах плитки будут расположены в разном направлении, а между отдельными участками ровного паркета появятся дыры.
Примерно те же процессы происходят и при росте кристаллов, только сложность здесь еще и в том, что частички должны укладываться не на плоскости, а в объеме. Но ведь никакого «паркетчика» здесь нет — кто же укладывает частички вещества на свое место? Оказывается, они укладываются сами, потому что непрерывно движутся и ищут самое подходящее для себя место, где им будет наиболее «удобно». А удобнее им там, где они сильнее всего связаны с другими частицами в кристалле.
Кристаллизацию обычно ведут при охлаждении раствора.
При каждой температуре в данном количестве растворителя (у нас это вода) может раствориться не более определенного количества вещества (рис. 5.1).
Например, в 100 г волы при +90 «С может раствориться 54 г хлорида калия — и ни граммом больше. Будем теперь охлаждать раствор. С понижением температуры растворимость большинства веществ уменьшается. Так. при +80 °C в 100 г воды можно растворить уже не более 51 г этой соли. Куда же денутся остальные 3 г? Они выпадут в осадок. Если с осадка слить воду и рассмотреть его в сильную лупу, то мы увидим множество мелких кристалликов. Как они образовались? При охлаждении раствора частички вещества (в данном случае это ионы калия и хлора), которым уже не хватает воды, чтобы находиться в растворенном состоянии, слипаются друг с другом, образуя крошечные кристаллы-зародыши. Если охлаждение медленное, зародышей образуется немного и, обрастая постепенно частичками вещества со всех сторон, они превращаются в красивые кристаллики правильной кубической формы.